Efficient Authentication from Hard Learning Problems
نویسندگان
چکیده
منابع مشابه
29 Np-hard Problems 29.1 'efficient' Problems
A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard prob...
متن کاملLecture 29: Np-hard Problems [fa'12] 29 Np-hard Problems 29.1 'efficient' Problems
A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard prob...
متن کاملLecture 21: Np-hard Problems 21 Np-hard Problems 21.1 'efficient' Problems
A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard prob...
متن کاملApproximate-Deterministic Public Key Encryption from Hard Learning Problems
We introduce the notion of approximate-deterministic public key encryption (A-DPKE), which extends the notion of deterministic public key encryption (DPKE) by allowing the encryption algorithm to be “slightly” randomized. However, a ciphertext convergence property is required for A-DPKE such that the ciphertexts of a message are gathering in a small metric space, while ciphertexts of different ...
متن کاملEmbedding Hard Learning Problems Into Gaussian Space
We give the first representation-independent hardness result for agnostically learning halfspaces with respect to the Gaussian distribution. We reduce from the problem of learning sparse parities with noise with respect to the uniform distribution on the hypercube (sparse LPN), a notoriously hard problem in theoretical computer science and show that any algorithm for agnostically learning halfs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cryptology
سال: 2016
ISSN: 0933-2790,1432-1378
DOI: 10.1007/s00145-016-9247-3